Ovi -
we cover every issue
Status: Refugee - Is not a choice  
Ovi Bookshop - Free Ebook
Tony Zuvela - Cartoons, Illustrations
Ovi Language
Ovi on Facebook
WordsPlease - Inspiring the young to learn
Murray Hunter: Opportunity, Strategy and Entrepreneurship
International Red Cross and Red Crescent Movement
BBC News :   - 
iBite :   - 
Chernobyl Nuclear Disaster Chernobyl Nuclear Disaster
by The Ovi Team
2017-04-26 09:33:30
Print - Comment - Send to a Friend - More from this Author
DeliciousRedditFacebookDigg! StumbleUpon

26th April 1986; an explosion and fire at the No. 4 reactor of Chernobyl nuclear power plant in Ukraine resulted in a nuclear meltdown sending radioactivity into the atmosphere. The Radiation fallout spread throughout Europe the Chernobyl disaster is considered the largest nuclear accident in history.

cherno_400The April 1986 disaster at the Chernobyl nuclear power plant in the Ukraine was the product of a flawed Soviet reactor design coupled with serious mistakes made by the plant operators. It was a direct consequence of Cold War isolation and the resulting lack of any safety culture.

The accident destroyed the Chernobyl 4 reactor, killing 30 operators and firemen within three months and several further deaths later. One person was killed immediately and a second died in hospital soon after as a result of injuries received. Another person is reported to have died at the time from a coronary thrombosis. Acute radiation syndrome (ARS) was originally diagnosed in 237 people on-site and involved with the clean-up and it was later confirmed in 134 cases. Of these, 28 people died as a result of ARS within a few weeks of the accident. Nineteen more subsequently died between 1987 and 2004 but their deaths cannot necessarily be attributed to radiation exposure. Nobody off-site suffered from acute radiation effects although a large proportion of childhood thyroid cancers diagnosed since the accident is likely to be due to intake of radioactive iodine fallout. Furthermore, large areas of Belarus, Ukraine, Russia and beyond were contaminated in varying degrees.

The Chernobyl disaster was a unique event and the only accident in the history of commercial nuclear power where radiation-related fatalities occurred. However, the design of the reactor is unique and the accident is thus of little relevance to the rest of the nuclear industry outside the then Eastern Bloc.

The Chernobyl site and plant

The Chernobyl Power Complex, lying about 130 km north of Kiev, Ukraine, and about 20 km south of the border with Belarus, consisted of four nuclear reactors of the RBMK-1000 design, units 1 and 2 being constructed between 1970 and 1977, while units 3 and 4 of the same design were completed in 1983. Two more RBMK reactors were under construction at the site at the time of the accident. To the southeast of the plant, an artificial lake of some 22 square kilometres, situated beside the river Pripyat, a tributary of the Dniepr, was constructed to provide cooling water for the reactors.

This area of Ukraine is described as Belarussian-type woodland with a low population density. About 3 km away from the reactor, in the new city, Pripyat, there were 49,000 inhabitants. The old town of Chornobyl, which had a population of 12,500, is about 15 km to the southeast of the complex. Within a 30 km radius of the power plant, the total population was between 115,000 and 135,000.

The RBMK-1000 is a Soviet-designed and built graphite moderated pressure tube type reactor, using slightly enriched (2% U-235) uranium dioxide fuel. It is a boiling light water reactor, with two loops feeding steam directly to the turbines, without an intervening heat exchanger. Water pumped to the bottom of the fuel channels boils as it progresses up the pressure tubes, producing steam which feeds two 500 MWe turbines. The water acts as a coolant and also provides the steam used to drive the turbines. The vertical pressure tubes contain the zirconium alloy clad uranium dioxide fuel around which the cooling water flows. The extensions of the fuel channels penetrate the lower plate and the cover plate of the core and are welded to each. A specially designed refuelling machine allows fuel bundles to be changed without shutting down the reactor.

The moderator, whose function is to slow down neutrons to make them more efficient in producing fission in the fuel, is graphite, surrounding the pressure tubes. A mixture of nitrogen and helium is circulated between the graphite blocks to prevent oxidation of the graphite and to improve the transmission of the heat produced by neutron interactions in the graphite to the fuel channel. The core itself is about 7 m high and about 12 m in diameter. In each of the two loops, there are four main coolant circulating pumps, one of which is always on standby. The reactivity or power of the reactor is controlled by raising or lowering 211 control rods, which, when lowered into the moderator, absorb neutrons and reduce the fission rate. The power output of this reactor is 3200 MW thermal, or 1000 MWe. Various safety systems, such as an emergency core cooling system, were incorporated into the reactor design.

One of the most important characteristics of the RBMK reactor is that it it can possess a 'positive void coefficient', where an increase in steam bubbles ('voids') is accompanied by an increase in core reactivity. As steam production in the fuel channels increases, the neutrons that would have been absorbed by the denser water now produce increased fission in the fuel. There are other components that contribute to the overall power coefficient of reactivity, but the void coefficient is the dominant one in RBMK reactors. The void coefficient depends on the composition of the core - a new RBMK core will have a negative void coefficient. However, at the time of the accident at Chernobyl 4, the reactor's fuel burn-up, control rod configuration and power level led to a positive void coefficient large enough to overwhelm all other influences on the power coefficient.

The 1986 Chernobyl accident

On 25 April, prior to a routine shutdown, the reactor crew at Chernobyl 4 began preparing for a test to determine how long turbines would spin and supply power to the main circulating pumps following a loss of main electrical power supply. This test had been carried out at Chernobyl the previous year, but the power from the turbine ran down too rapidly, so new voltage regulator designs were to be tested.

A series of operator actions, including the disabling of automatic shutdown mechanisms, preceded the attempted test early on 26 April. By the time that the operator moved to shut down the reactor, the reactor was in an extremely unstable condition. A peculiarity of the design of the control rods caused a dramatic power surge as they were inserted into the reactor.

The interaction of very hot fuel with the cooling water led to fuel fragmentation along with rapid steam production and an increase in pressure. The design characteristics of the reactor were such that substantial damage to even three or four fuel assemblies can - and did - result in the destruction of the reactor. The overpressure caused the 1000 t cover plate of the reactor to become partially detached, rupturing the fuel channels and jamming all the control rods, which by that time were only halfway down. Intense steam generation then spread throughout the whole core (fed by water dumped into the core due to the rupture of the emergency cooling circuit) causing a steam explosion and releasing fission products to the atmosphere. About two to three seconds later, a second explosion threw out fragments from the fuel channels and hot graphite. There is some dispute among experts about the character of this second explosion, but it is likely to have been caused by the production of hydrogen from zirconium-steam reactions.

Two workers died as a result of these explosions. The graphite (about a quarter of the 1200 tonnes of it was estimated to have been ejected) and fuel became incandescent and started a number of fires, causing the main release of radioactivity into the environment. A total of about 14 EBq (14 x 1018 Bq) of radioactivity was released, over half of it being from biologically-inert noble gases.

About 200-300 tonnes of water per hour was injected into the intact half of the reactor using the auxiliary feedwater pumps but this was stopped after half a day owing to the danger of it flowing into and flooding units 1 and 2. From the second to tenth day after the accident, some 5000 tonnes of boron, dolomite, sand, clay and lead were dropped on to the burning core by helicopter in an effort to extinguish the blaze and limit the release of radioactive particles.


Immediate impact

It is estimated that all of the xenon gas, about half of the iodine and caesium, and at least 5% of the remaining radioactive material in the Chernobyl 4 reactor core (which had 192 tonnes of fuel) was released in the accident. Most of the released material was deposited close by as dust and debris, but the lighter material was carried by wind over the Ukraine, Belarus, Russia and to some extent over Scandinavia and Europe.

The casualties included firefighters who attended the initial fires on the roof of the turbine building. All these were put out in a few hours, but radiation doses on the first day were estimated to range up to 20,000 millisieverts (mSv), causing 28 deaths - six of which were firemen - by the end of July 1986.

The next task was cleaning up the radioactivity at the site so that the remaining three reactors could be restarted, and the damaged reactor shielded more permanently. About 200,000 people ('liquidators') from all over the Soviet Union were involved in the recovery and clean-up during 1986 and 1987. They received high doses of radiation, averaging around 100 millisieverts. Some 20,000 of them received about 250 mSv and a few received 500 mSv. Later, the number of liquidators swelled to over 600,000 but most of these received only low radiation doses. The highest doses were received by about 1000 emergency workers and on-site personnel during the first day of the accident.

Initial radiation exposure in contaminated areas was due to short-lived iodine-131; later caesium-137 was the main hazard. (Both are fission products dispersed from the reactor core, with half lives of eight days and 30 years, respectively. 1.8 Ebq of I-131 and 0.085 Ebq of Cs-137 were released.) About five million people lived in areas contaminated (above 37 kBq/m2 Cs-137) and about 400,000 lived in more contaminated areas of strict control by authorities (above 555 kBq/m2 Cs-137).

On 2-3 May, some 45,000 residents were evacuated from within a 10 km radius of the plant, notably from the plant operators' town of Pripyat. On 4 May, all those living within a 30 kilometre radius - a further 116,000 people from the more contaminated area - were evacuated and later relocated. About 1000 of these have since returned unofficially to live within the contaminated zone. Most of those evacuated received radiation doses of less than 50 mSv, although a few received 100 mSv or more.

Reliable information about the accident and resulting contamination was not available to affected people for about two years following the accident. This led to distrust and confusion about health effects.

In the years following the accident, a further 210,000 people were resettled into less contaminated areas, and the initial 30 km radius exclusion zone (2800 km2) was modified and extended to cover 4300 square kilometres. This resettlement was due to application of a criterion of 350 mSv projected lifetime radiation dose, though in fact radiation in most of the affected area (apart from half a square kilometre) fell rapidly so that average doses were less than 50% above normal background of 2.5 mSv/yr.

Environmental and health effects of the Chernobyl accident

Several organisations have reported on the impacts of the Chernobyl accident, but all have had problems assessing the significance of their observations because of the lack of reliable public health information before 1986.

In 1989, the World Health Organization (WHO) first raised concerns that local medical scientists had incorrectly attributed various biological and health effects to radiation exposure Following this, the Government of the USSR requested the International Atomic Energy Agency (IAEA) to coordinate an international experts' assessment of accident's radiological, environmental and health consequences in selected towns of the most heavily contaminated areas in Belarus, Russia, and Ukraine. Between March 1990 and June 1991, a total of 50 field missions were conducted by 200 experts from 25 countries (including the USSR), seven organisations, and 11 laboratories, In the absence of pre-1986 data, it compared a control population with those exposed to radiation. Significant health disorders were evident in both control and exposed groups, but, at that stage, none was radiation related.

Subsequent studies in the Ukraine, Russia and Belarus were based on national registers of over one million people possibly affected by radiation. By 2000, about 4000 cases of thyroid cancer had been diagnosed in exposed children. However, the rapid increase in thyroid cancers detected suggests that some of it at least is an artefact of the screening process. Thyroid cancer is usually not fatal if diagnosed and treated early.

In February 2003, the IAEA established the Chernobyl Forum, in cooperation with seven other UN organisations as well as the competent authorities of Belarus, the Russian Federation and Ukraine. In April 2005, the reports prepared by two expert groups - "Environment", coordinated by the IAEA, and "Health", coordinated by WHO - were intensively discussed by the Forum and eventually approved by consensus. The conclusions of this 2005 Chernobyl Forum study (revised version published 2006i) are in line with earlier expert studies, notably the UNSCEAR 2000 reportj which said that "apart from this [thyroid cancer] increase, there is no evidence of a major public health impact attributable to radiation exposure 14 years after the accident. There is no scientific evidence of increases in overall cancer incidence or mortality or in non-malignant disorders that could be related to radiation exposure." As yet there is little evidence of any increase in leukaemia, even among clean-up workers where it might be most expected. However, these workers - where high doses may have been received - remain at increased risk of cancer in the long term.

The Chernobyl Forum report says that people in the area have suffered a paralysing fatalism due to myths and misperceptions about the threat of radiation, which has contributed to a culture of chronic dependency. Some "took on the role of invalids." Mental health coupled with smoking and alcohol abuse is a very much greater problem than radiation, but worst of all at the time was the underlying level of health and nutrition. Apart from the initial 116,000, relocations of people were very traumatic and did little to reduce radiation exposure, which was low anyway. Psycho-social effects among those affected by the accident are similar to those arising from other major disasters such as earthquakes, floods and fires.

The average radiation doses for the general population of the contaminated areas over 1986-2005 is estimated to be between 10 and 20 mSv, and the vast majority receive under 1 mSv/yr. These are lower than the natural levels to which many people are exposed. Some people have moved back into the exclusion zone, which remains contaminated, and this is allowed as long as annual dose rate (mainly from diet) is projected to be below 15 mSv/yr - a bit less than the internationally-accepted maximum occupational dose rate.

Some exaggerated figures have been published regarding the death toll attributable to the Chernobyl disaster. A publication by the UN Office for the Coordination of Humanitarian Affairs (OCHA) lent support to these. However, the Chairman of UNSCEAR made it clear that "this report is full of unsubstantiated statements that have no support in scientific assessments", and the Chernobyl Forum report also repudiates them.

Progressive closure of the Chernobyl plant

In the early 1990s, some US$400 million was spent on improvements to the remaining reactors at Chernobyl, considerably enhancing their safety. Energy shortages necessitated the continued operation of one of them (unit 3) until December 2000. (Unit 2 was shut down after a turbine hall fire in 1991, and unit 1 at the end of 1997.) Almost 6000 people worked at the plant every day, and their radiation dose has been within internationally accepted limits. A small team of scientists works within the wrecked reactor building itself, inside the shelterl.

Workers and their families now live in a new town, Slavutich, 30 km from the plant. This was built following the evacuation of Pripyat, which was just 3 km away.

Ukraine depends upon, and is deeply in debt to, Russia for energy supplies, particularly oil and gas, but also nuclear fuel. Although this dependence is gradually being reduced, continued operation of nuclear power stations, which supply half of total electricity, is now even more important than in 1986.

When it was announced in 1995 that the two operating reactors at Chernobyl would be closed by 2000, a memorandum of understanding was signed by Ukraine and G7 nations to progress this, but its implementation was conspicuously delayed. Alternative generating capacity was needed, either gas-fired, which has ongoing fuel cost and supply implications, or nuclear, by completing Khmelnitski unit 2 and Rovno unit 4 ('K2R4') in Ukraine. Construction of these was halted in 1989 but then resumed, and both reactors came on line late in 2004, financed by Ukraine rather than international grants as expected on the basis of Chernobyl's closure.

Chernobyl today

Chernobyl unit 4 is now enclosed in a large concrete shelter which was erected quickly to allow continuing operation of the other reactors at the plant. However, the structure is neither strong nor durable. The international Shelter Implementation Plan in the 1990s involved raising money for remedial work including removal of the fuel-containing materials. Some major work on the shelter was carried out in 1998 and 1999. Some 200 tonnes of highly radioactive material remains deep within it, and this poses an environmental hazard until it is better contained.

A New Safe Confinement structure will be built by the end of 2011, and then will be moved into place on rails. It is to be an 18,000 tonne metal arch 105 metres high, 200 metres long and spanning 257 metres, to cover both unit 4 and the hastily-built 1986 structure. The Chernobyl Shelter Fund, set up in 1997, had received €810 million from international donors and projects towards this project and previous work. It and the Nuclear Safety Account, also applied to Chernobyl decommissioning, are managed by the European Bank for Reconstruction and Development (EBRD), which announced a €135 million contribution to the fund in May 2008. The total cost of the new shelter is estimated to be €1.2 billion.

Used fuel from units 1 to 3 is stored in each unit's cooling pond, in a small interim spent fuel storage facility pond (ISF-1), and in the reactor of unit 3.

In 1999, a contract was signed for construction of a radioactive waste management facility to store 25,000 used fuel assemblies from units 1-3 and other operational wastes, as well as material from decommissioning units 1-3 (which will be the first RBMK units decommissioned anywhere). The contract included a processing facility, able to cut the RBMK fuel assemblies and to put the material in canisters, which will be filled with inert gas and welded shut. They will then be transported to the dry storage vaults in which the fuel containers would be enclosed for up to 100 years. This facility, treating 2500 fuel assemblies per year, would be the first of its kind for RBMK fuel. However, after a significant part of the storage structures had been built, technical deficiencies in the concept emerged, and the contract was terminated in 2007. The interim spent fuel storage facility (ISF-2) is now planned to be completed by others by mid-2013.

In April 2009, Nukem handed over a turnkey waste treatment centre for solid radioactive waste (ICSRM, Industrial Complex for Radwaste Management). In this, solid low- and intermediate-level wastes accumulated from the power plant operations and the decommissioning of reactor blocks 1 to 3 is conditioned. The wastes are processed in three steps. First, the solid radioactive wastes temporarily stored in bunkers is removed for treatment. In the next step, these wastes, as well as those from decommissioning reactor blocks 1-3, are processed into a form suitable for permanent safe disposal. Low- and intermediate-level wastes are separated into combustible, compactable, and non-compactable categories. These are then subject to incineration, high-force compaction, and cementation respectively. In addition, highly radioactive and long-lived solid waste is sorted out for temporary separate storage. In the third step, the conditioned solid waste materials are transferred to containers suitable for permanent safe storage.

As part of this project, at the end of 2007, Nukem handed over an Engineered Near Surface Disposal Facility for storage of short-lived radioactive waste after prior conditioning. It is 17 km away from the power plant at the Vektor complex within the 30-km zone. The storage area is designed to hold 55,000 m3 of treated waste which will be subject to radiological monitoring for 300 years, by when the radioactivity will have decayed to such an extent that monitoring is no longer required.

Another contract has been let for a Liquid Radioactive Waste Treatment Plant, to handle some 35,000 cubic metres of low- and intermediate-level liquid wastes at the site. This will need to be solidified and eventually buried along with solid wastes on site.

In January 2008, the Ukraine government announced a four-stage decommissioning plan which incorporates the above waste activities and progresses towards a cleared site.

What has been learnt from the Chernobyl disaster?

Leaving aside the verdict of history on its role in melting the Soviet 'Iron Curtain', some very tangible practical benefits have resulted from the Chernobyl accident. The main ones concern reactor safety, notably in eastern Europe. (The US Three Mile Island accident in 1979 had a significant effect on Western reactor design and operating procedures. While that reactor was destroyed, all radioactivity was contained - as designed - and there were no deaths or injuries.)

While no-one in the West was under any illusion about the safety of early Soviet reactor designs, some lessons learned have also been applicable to Western plants. Certainly the safety of all Soviet-designed reactors has improved vastly. This is due largely to the development of a culture of safety encouraged by increased collaboration between East and West, and substantial investment in improving the reactors.

Modifications have been made to overcome deficiencies in all the RBMK reactors still operating. In these, originally the nuclear chain reaction and power output could increase if cooling water were lost or turned to steam, in contrast to most Western designs. It was this effect which led to the uncontrolled power surge that led to the destruction of Chernobyl 4. All of the RBMK reactors have now been modified by changes in the control rods, adding neutron absorbers and consequently increasing the fuel enrichment from 1.8 to 2.4% U-235, making them very much more stable at low power. Automatic shut-down mechanisms now operate faster, and other safety mechanisms have been improved. Automated inspection equipment has also been installed. A repetition of the 1986 Chernobyl accident is now virtually impossible, according to a German nuclear safety agency report.

Since 1989, over 1000 nuclear engineers from the former Soviet Union have visited Western nuclear power plants and there have been many reciprocal visits. Over 50 twinning arrangements between East and West nuclear plants have been put in place. Most of this has been under the auspices of the World Association of Nuclear Operators (WANO), a body formed in 1989 which links 130 operators of nuclear power plants in more than 30 countries.

Many other international programmes were initiated following Chernobyl. The International Atomic Energy Agency (IAEA) safety review projects for each particular type of Soviet reactor are noteworthy, bringing together operators and Western engineers to focus on safety improvements. These initiatives are backed by funding arrangements. The Nuclear Safety Assistance Coordination Centre database lists Western aid totalling almost US$1 billion for more than 700 safety-related projects in former Eastern Bloc countries. The Convention on Nuclear Safety adopted in Vienna in June 1994 is another outcome.

The Chernobyl Forum report said that some seven million people are now receiving or eligible for benefits as 'Chernobyl victims', which means that resources are not targeting the needy few percent of them. Remedying this presents daunting political problems however.


Print - Comment - Send to a Friend - More from this Author

Get it off your chest
 (comments policy)

© Copyright CHAMELEON PROJECT Tmi 2005-2008  -  Sitemap  -  Add to favourites  -  Link to Ovi
Privacy Policy  -  Contact  -  RSS Feeds  -  Search  -  Submissions  -  Subscribe  -  About Ovi